コンボリューション層の誤差逆伝搬法の図解:Back Propagation of CNN (Convolutional Neural Network)

かなり前に「コンボリューショナル・ニューラルネットワークの誤差逆伝播法」をアップしたが、数式ばかりで意味が分かりにくい向きもあるかと思い、図解で分かりやすく説明することにした。

逆伝播を説明するには順方向の伝播をきちんと理解する必要があるので、その説明から始める。図1は順方向のコンボリューション(畳み込み)処理を表している。

図1.順方向のコンボリューション処理1

\[\begin{eqnarray*}
{Y}_{ijk}^{p} &=& \sum _{ a=0 }^{ m-1 }{ \sum _{ b=0 }^{ m-1 }{ {w}_{abk} {X}_{ (i+a)(j+b) }^{p-1}} }\qquad(1)\\
\end{eqnarray*}\] 

\(p-1\)番目のニューラルネットワーク層は、出力\(X_{i,j}^{p-1}\)の2次元配列\((i,j)\)のユニットで構成されている。この層にサイズ\(m*m\)、結合荷重\(W_{abk}\)のカーネルによるコンボリューション処理の計算値\(Y_{i,j,k}^p\)(図1の中に計算式が表示されている)が\(p\)番目のニューラルネットワーク層のユニットへの入力値となることを示している。ここで、kはp層を構成するチャネル(特徴マップ)の番号を表しており、ある一つのコンボルーション層に着目した図であることを意味している。

\(p-1\)層の位置\((i,j)\)にある出力\(X_{i,j}^{p-1}\)は、コンボリューションの開始位置が\((i-m+1,j-m+1)\)と\((i,j)\)を左上と右下の角とする正方形にある場合にコンボリューション処理に取り込まれる。コンボリューションの開始位置が\((i-m+1,j-m+1)\)の場合の計算値\(Y_{i-m+1,j-m+1,k}^p\)はp層の位置\((i-m+1,j-m+1)\)に入力され、コンボリューションの開始位置が\((i,j)\)の場合の計算値\(Y_{i,j,k}^p\)はp層の位置\((i,j)\)に入力される。上記正方形以外の位置を開始位置とするコンボリューション処理には\(X_{i,j}^{p-1}\)は関係しない。この様子を分かりやすく表したのが図2である。

図2.順方向のコンボリューション処理2

p-1層の\(X_{i,j}^{p-1}\)を含むコンボリューションは図2のp-1層の中に記した橙色の正方形内にコンボリューションカーネルが存在する場合であり、この時の計算値はp層の位置\((i-m+1,j-m+1)\)と\((i,j)\)を左上と右下の角とする正方形に入力される。この正方形が図2のp層内に薄緑色で塗られた領域である。つまり、p-1層の位置\((i,j)\)にある\(X_{i,j}^{p-1}\)はコンボリューション処理によりp層の位置\((i-m+1,j-m+1)\)と\((i,j)\)を角とする正方形の領域に寄与しているのである。

この図式を念頭において、逆伝播を考えてみよう(「コンボリューショナル・ニューラルネットワークの誤差逆伝播法」の式9以下で示した数式がこの部分に相当する)。逆伝播ではp層からp-1層へ誤差を伝播させるが、p-1層の位置\((i,j)\)に影響を与えるp層の範囲は位置\((i-m+1,j-m+1)\)と\((i,j)\)を角とする正方形の領域のみである。この様子が図3に示されており、図3のp層の薄緑色の領域にカーネルサイズ\(m*m\)、結合荷重\(W_{abk}\)のコンボリューション処理をし、その結果をp-1層の位置\((i,j)\)に代入すれば得られる。これは次式で表される。
\[\begin{eqnarray*}
{X}_{ijk}^{p-1} &=& \sum _{ a=0 }^{ m-1 }{ \sum _{ b=0 }^{ m-1 }{ {w}_{abk} {Y}_{ (i-a)(j-b) }^{p}} }\qquad(2)\\
\end{eqnarray*}\] 

図3.逆方向のコンボリューション処理

順方向のコンボリューション処理を表す式(1)と逆方向のコンボリューション処理を表す式(2)の違いはコンボリューション処理を掛ける層の下付き添え字が\((i+a,j+b)\)となるか、\((i-a,j-b)\)となるかの違いであり、これはコンボリューション処理を掛ける層のユニット位置が+方向に進むか-方向に進むかの違いを表している(-方向に進む場合、コンボリューションカーネルの要素を上下左右に反転させた\(rot180°\)カーネルを用いると、+方向の通常のコンボリューション処理として表現できる)。言い換えると、順方向の信号伝播も逆方向の信号伝播もともにコンボリューション処理で表せるが、コンボリューション処理を進めるユニット位置の進行方向が逆になる、ということである。この点に留意すれば、両方向への信号伝播が単純なコンボリューション処理で済ませられる。

コンボリューショナル(畳み込み)ニューラルネットワークConvolutional Neural Network(CNN)の誤差逆伝播法

従来のニューラルネットワークの誤差逆伝播法に関してはすでに解説したので、今回はディープラーニングでよく用いられるコンボリューショナル(畳み込み)ニューラルネットワークの誤差逆伝播法(Back Propagation)について解説する。

コンボリューショナルニューラルネットワークの構造を解説した投稿の図2を念頭に置きながら、以下の式の意味を理解して頂きたい。

先ず、\(p-1\)番目の層は2次元配列\((i,j)\)のユニットで構成された、出力\(X_{i j}^{p-1}\)のコンボリューション層であり、\(p\)番目の層はチャネル数を表すk座標にe枚の特徴マップを持つ層とする。コンボリューションのカーネルサイズをm×m、カーネルの2次元座標を\((a,b)\)、結合荷重を\(w_{abk}\)とすると、\(p\)番目の層への入力\({Y}_{ijk}^{p}\)と出力\({X}_{ijk}^{p}\)は式(1)、(2)で表される。

\[\begin{eqnarray*}
{Y}_{ijk}^{p} &=& \sum _{ a=0 }^{ m-1 }{ \sum _{ b=0 }^{ m-1 }{ {w}_{abk} {X}_{ (i+a)(j+b) }^{p-1}} }\qquad(1)\\
\\X_{ijk}^{p} &=& f(Y_{ijk}^{p}) \qquad \qquad \qquad (2)
\end{eqnarray*}\] ここで\(k\)は特徴マップの枚数のインデックスであるので\(0~e-1\)の値をとる。fは非線形活性化関数を表している。\(p-1\)番目の層がd枚の特徴マップで構成される場合は、式(1)は次式のようになる。

\[{Y}_{ijk}^{p}=\sum _{ c=0 }^{ d-1 }\sum _{ a=0 }^{ m-1 }{ \sum _{ b=0 }^{ m-1 }{ {w}_{abck} { X }_{ (i+a)(j+b)c}^{p-1} } }\qquad(3)\]ここで\(c\)は\(p-1\)番目の層の特徴マップのインデックスを表す。式(3)は式(1)と同様の形をしているので、以下では簡単のために\(d=1\)の場合である式(1)を例として話を進める。

【結合荷重の更新方法】

誤差逆伝播法では各層の出力の誤差を\(E\)とすると、1回の学習における結合荷重の微小更新量\(\Delta {w}_{abk}\)は学習率\(\eta\)を用いて次式のように設定される。
\[\Delta {w}_{abk} = -\eta\frac {\partial E}{ \partial {w}_{abk}} \qquad (4) \] コンボリューションを行う層のユニット数がN×Nで構成されているとすると、コンボリューションのカーネルが移動できるユニット数は(N-m+1)×(N-m+1)となる。これら全てが結合荷重\({w}_{abk}\)で重み付けされているので、式(4)はChain rule(連鎖法則)により次のように変形される。
\[\begin{eqnarray*}
\Delta {w}_{abk} &=& -\eta  \frac { \partial E }{ \partial {X}_{ijk}^{p}} \frac { \partial {X}_{ijk}^{p}}{ \partial {Y}_{ijk}^{p}} \frac { \partial {Y}_{ijk}^{p} }{ \partial {w}_{abk}} \qquad(5)\\
\\&=& -\eta  \frac { \partial \sum _{ i=0 }^{ N-m }{\sum _{ j=0 }^{ N-m }{E }}}{ \partial {X}_{ijk}^{p}} \frac { \partial {X}_{ijk}^{p}}{ \partial {Y}_{ijk}^{p}} \frac { \partial {Y}_{ijk}^{p} }{ \partial {w}_{abk}} \qquad(6)\\
\\&=& -\eta \sum _{ i=0 }^{ N-m }{ \sum _{ j=0 }^{ N-m }{ \frac { \partial E }{ \partial {X}_{ijk}^{p}} \frac { \partial {X}_{ijk}^{p}}{ \partial {Y}_{ijk}^{p}} \frac { \partial {Y}_{ijk}^{p} }{ \partial {w}_{abk}}}} \qquad(7)\\
\\ &=& -\eta \sum _{i=0}^{N-m}{ \sum _{ j=0 }^{ N-m }{ \frac { \partial E }{ \partial {X}_{ijk}^{p}} \frac { \partial \left( f\left( {Y}_{ijk}^{p} \right)\right)}{ \partial {Y}_{ijk}^{p}} \cdot {X}_{ (i+a)(j+b)}^{p-1}}} \qquad(8) \\
\\ &=& -\eta \sum _{i=0}^{N-m}{ \sum _{ j=0 }^{ N-m }{ \frac { \partial E }{ \partial {X}_{ijk}^{p}} f^{ \prime }\left( {Y}_{ijk}^{p} \right) \cdot {X}_{ (i+a)(j+b)}^{p-1}}} \qquad(9)
\end{eqnarray*}\]ここでは式(1)を偏微分して得られる次式(10)を用いた。式(1)にあるサメーションが外れているのは、特定の\(a,b\)を持つ\({w}_{abk}\)で微分しているので、それ例外の\(a,b\)を持つ項の微分がゼロとなるからである。
\[X_{(i+a)(j+b)}^{p-1}=\frac { \partial {Y}_{ijk}^{p} }{ \partial {w}_{abk} } \qquad(10)\]
式(9)の\(X_{(i+a)(j+b)}^{p-1}\)はフォワードプロパゲーションの時に得られる値であり、\(f^{ \prime }\left( {Y}_{ijk}^{p} \right)\)は微分した活性化関数に入力値を代入すれば得られる値で、共に既知である。p層への入力値\({X}_{ijk}^{p}\)による微分誤差\(\partial E/\partial {X}_{ijk}^{p}\)は、出力層の出力と教師画像との二乗誤差の微分値を最初の値とし、それを前の層に順番に逆伝播して利用するものである。これを前の層に順番に逆伝播させることで順次取得できる。\(\partial E/\partial {X}_{ijk}^{p}\)を\({ \delta }_{ i,j }^{ p }\)と記載すると、式(4)は次式となり、荷重結合の微小更新量を得ることができる。

\[\Delta {w}_{abk} = -\eta\sum _{i=0}^{N-m}{ \sum _{ j=0 }^{ N-m } {{ \delta }_{ ij }^{ p } f^{ \prime }\left( {Y}_{ijk}^{p} \right) \cdot {X}_{ (i+a)(j+b)}^{p-1}}} \qquad(11)\]

ここで注意したい点がある。それはコンボリューション処理を経由してp層からp-1層へ\(\partial E/\partial {X}_{ijk}^{p}\) (=\({ \delta }_{ i,j }^{ p }\))を逆伝播する方法である。少しわかりにくい点があるので、以下で解説する。

【コンボリューション層での誤差逆伝播法】

p番目のコンボリューション層はe枚の特徴マップで構成されているので、p-1番目の層の微分誤差は次式のように展開される。
\[\begin{eqnarray*}
\frac { \partial E }{ \partial {X}_{ij}^{p-1}} &=& \sum _{c=0} ^{e-1} \sum _{a=0} ^{m-1}{ \sum _{b=0}^{m-1}{ \frac {\partial E}{\partial {X}_{(i-a)(j-b)c}^{p} } \frac { \partial {X}_{(i-a)(j-b)c}^{p} }{ \partial {Y}_{(i-a)(j-b)c}^{p}} \frac { \partial {Y}_{(i-a)(j-b)c}^{p} }{ \partial {X}_{ij}^{p-1}} }} \quad(12) \\
\\ &=& \sum _{c=0} ^{e-1} \sum _{a=0} ^{m-1}{ \sum _{b=0}^{m-1}{ \frac {\partial E}{\partial {X}_{(i-a)(j-b)c}^{p} } f^{ \prime }\left( {Y}_{(i-a)(j-b)c}^{p} \right) \cdot {w}_{abc}}} \quad(13)
\end{eqnarray*}\] ここでは式(2)と、式(1)を\(X\)で偏微分して得られる式(11)を用いた。
\[\frac{\partial{Y}_{(i-a)(j-b)c}^{p}}{\partial{X}_{ij}^{p-1}} = w_{abc} \qquad(14)\]p番目の層の\(Y\)や\(X\)の添え字が\(i-a\)や\(j-b\)と表記されているが、式(1)におけるp-1番目の層の\(X\)の添え字\(i+a\)や\(j+b\)と符号が逆になっている。これはフォワードプロパゲーションの畳み込み演算において、p-1番目の層の座標\((i+a,j+b)\)がp番目の層の\((i,j)\)に対応しているので、p-1番目の層の座標\((i,j)\)はp番目の層の\((i-a,j-b)\)に対応するからである(詳しい説明を「コンボリューション層の誤差逆伝播法の図解説」で行っているので、参考にしてください)。

式(10)の\(\partial E/\partial {X}_{(i-a)(j-b)c}^{p}\)はp番目の層の微分誤差であり既知であるので、前の層に逆伝播される\(\partial E/\partial {X}_{ijk}^{p-1}\)が求められる。

コンボリューション層の誤差逆伝播式は式(12)などに表されるように、サメーション\(\sum\)を複数用いるので、何をしているのか分かりにくいかもしれない。しかし、ここで行っている誤差逆伝播は従来のニューラルネットワークの誤差逆伝播と本質的に同じである。結合荷重で結ばれているユニット間で誤差を伝播しているだけである。ただコンボリューション層では一つの結合荷重が複数のユニット間を結合しているので、それらの誤差を積算しなければならない。そのためにサメーション\(\sum\)が複数個使われることになる。

コンボリューショナルニューラルネットワークでは、マックスプーリング層が用いられることが多いが、この層は単にコンボリューション層のユニットを一定サイズのブロックに区分し、各ブロック内の最大値を持つユニットを抽出する役割を果たす。従って、誤差逆伝播ではプーリング層のユニットをコンボリューション層の各ブロックの最大値を持つユニットに結びつけるだけでよい。

以上のようにして、コンボリューショナルニューラルネットワークに関する誤差逆伝播を計算することができる。

ニューラルネットワークとディープラーニングの性能の比較

前の投稿ではニューラルネットワークとディープラーニングの構造を比較した。そこでは手書き数字画像(幅28画素*高さ28画素の白黒画像)を認識する場合を取り上げた。今回はその構造の違いにより性能がどのように異なるのかを説明する。

まず、前の投稿で示したニューラルネットワークとディープラーニングの画像認識プログラムをC++言語で作成した。機械学習の理論に基づいて、全てのプログラムを自作した。手書きの数字画像はMNISTのデータベースを使用した。ここには7万画像が含まれているので、トレーニングに6万画像、性能テストに残りの1万画像を使った。トレーニングに使った画像は性能テストには使用しないことが、正しく性能を評価する上で重要である。

図1にニューラルネットワーク(MLP:多層パーセプトロン)の場合のトレーニング回数(Training Epochs)と性能テストの正解率(Correct Rate)の関係を示す。トレーニングにおいては、6万枚の画像からランダムに画像を選び、画像1枚を入力する毎にバックプロパゲーションにて結合荷重を更新した。

図1 MLPによる手書き数字の認識正解率

トレーニングパラメータとして学習率ETA=0.01 とした。図中の←10、←100、←500、←1000などはトレーニング回数を表す。認識するのは数字0~9の10文字なので、全くデタラメに回答した場合の正解率は10%となるが、わずか10回学習するだけで、正解率が24%になり、100回で45.2%、1000回で84.6%と急速に向上する。このように正解率が急速に向上するのは、バックプロパゲーションによる学習(結合荷重の更新)が効果的になされていることを示している。

トレーニング1万回では91.3%、3万回で95.4%となり、その後、正解率は横這いとなる。8万回の時に最高値96.5%となっているが、約6万回以降、トレーニング毎の結合荷重の更新で正解率が微小に振動しているので、その影響で最高値が出たと考えられる。トレーニングに使える画像が6万枚であるので、トレーニング回数も6万回程度で飽和するのはもっともなことだと考えられる。トレーニングに使用した画像が似たような画像ばかりであれば、もっと少ないトレーニング回数で正解率が飽和することもあり得る。

次にディープラーニング(CNN:コンボリューショナルニューラルネットワーク)による手書き数字の認識正解率とトレーニング回数のグラフを図2に示す。用いたデータは上記と同じMNISTデータである。

図2 ディープラーニング(CNN)による手書き数字の認識正解率

ディープラーニングのトレーニングパラメータとして、学習率ETA=0.01、バッチサイズ10、Momentum=0.1、L2=0.001とした。ドロップアウトは用いていない。バッチサイズ10とは10枚の画像で1回結合荷重を更新することを意味する。

図2でも最初のトレーニングで急速に正解率が向上しており、バックプロパゲーションによる学習が適切に行われていることが分かる。1万回程度のトレーニングで正解率は横這いとなるが、それ以降ほんのわずかずつ向上し、6万回では最高値98.8%の正解率を出した。しかし、このあたりではMLPによるトレーニングと同様に、結合荷重の更新毎に正解率は微小に振動している。また、パラメータの値を変えたり、あるいはCNNの層構造やカーネルのサイズを変えると、正解率も変わるので、いろいろ工夫することで、さらに良い正解率を達成することも十分可能である。

以上のように、従来のニューラルネットワークと最近注目されているディープラーニングの基本的な構造でその性能を比較した。画像認識の性能はそれぞれ96.5%と98.8%となり、2%の差が出た。100%に近いレベルにおいて2%の差が出るということは結構な性能向上と言ってよいであろう。私もこのMNISTのデータを目視で少しだけ認識したが、実は判断のつかない画像が散見された。図3はMNISTデータの一例だが、数字が何なのかを認識するのは簡単ではない。

図3 MNIST画像の判別しにくい例(http://neuralnetworksanddeeplearning.com/chap6.htmlより)

図3の各数字の右上と右下に小さい数字が記入されているが、右上が正解で右下が間違いの例である。人間でも判断できない数字も少なくない。このような判別が難しい手書き数字の認識において正解率が98.8%あれば、まあま優秀と言えるのではないだろうか。画像認識プログラムは学習データだけを基準として判断するので、人間のような思い込みや自分の癖などが反映されない。よって、人間より客観的な判断ができると言える。

このような画像認識が可能となったディープラーニングは今後益々様々な用途に利用されていくことは間違いなさそうだ。

ニューラルネットワークとディープラーニングの構造の比較

ディープラーニングはニューラルネットワークの一形態であり、その層数を深くした構造を持つが、単に層数を深くしただけではなく、入力画像の形状を捉えるための工夫が施されている。今回はその構造について説明する。

まず、画像を認識する従来の基本的なニューラルネットワークの構造を図1に示す。これは多層パーセプトロンと呼ばれるニューラルネットワークで、この例では入力層1層、中間層であるHidden層1層、出力層1層の3層構造を有している。

図1 ニューラルネットワークの構造

Input層には写真などの2次元の画像が用いられるが、図1に示したように、2次元の画像は1次元に変換されて、入力される。この2次元から1次元への変換は、2次元の各行を単純に1行につないで並べるだけの変換である。

手書き数字(0~9)画像の代表的なデータベースであるMNISTを用いて画像認識を行う場合を例にとれば、Input層は手書き数字の画像サイズ28画素×28画素=784ユニットとなる。Hidden層には100ユニット程度が用いられるケースが多い。最後のOutput層は認識する数字の種類0~9の数と同じになるので、10ユニットとなる。つまり、入力画像が「0」であれば出力層の上から1番目のユニットの出力値が最大となり、入力画像が「1」であれば上から2番目のユニットの出力値が最大、「2」は3番目、「3」は4番目、、、「9」は10番目のユニットの出力が最大となるように機械学習させる。

ニューラルネットワークを作成する上での重要なポイントは結合荷重の設定である。図1の下の方に具体的な結合荷重の数を示した。W10は入力層とHidden層の間、W21は出力層とHidden層の間の結合荷重である。添え字wは荷重パラメータであり、添え字bはバイアスパラメータを示す。初期値にはランダム値が設定される。

このように従来のニューラルネットワークでは、図1のようなシンプルな層構造を持っている。

これに対し、ディープラーニングで画像を認識させる場合には、図2のような構造を取る。

図2 ディープラーニングの構造

ここでは画像認識で最も高い性能を上げているコンボリューショナルニューラルネットワークで手書き数字画像を認識する場合の一例を示した。図2に上の方に青い枠で囲まれた部分がディープラーニングの構成層を示し、その下の緑色の枠で囲まれた部分が演算に用いるフィルターである。その下に層を構成するユニットの模式図が描かれており、そのユニット数が紫色の下線を持つ数字で示されている。一番下のオレンジ色で囲まれた部分が各層間の結合荷重の構成を示している。

これらを具体的に説明する。図2の上の方で青い枠に囲まれている各層は、Input層、特徴マップ層Fmap1、MaxPoolingされた層S1、特徴マップ層Fmap2、全結合層HiddenF3、Output層で構成されている。

Input層には2次元画像28*28画素をそのまま使う。特徴マップ層Fmap1の1ユニットはInput層に5*5画素の畳み込みカーネルConv-karnelフィルタを掛けることで算出される。Input層28*28の画像の上に橙色の正方形で示されているカーネル領域を左から右に順番に移動させて、Fmap1の全てのユニットの値を算出する。Fmap1は4枚で構成されているので、この操作を4回繰り返して、4枚のFmap1を算出する。同じ操作を4回繰り返して4枚のFmap1を生成するが、演算に用いる結合荷重が異なるので、4枚のFmap1は全て異なる値を持つ。結合荷重の初期値はランダムに設定される。機械学習の過程では教師データの値をフィードバックするバックプロパゲーションにより結合荷重の値が更新される。

このようにして生成されたFmap1層に2*2ユニットのMaxPooling処理をして、S1層を算出する。2*2ユニットのMaxPooling処理とは、縦2横2のユニットの中の最大値をS1層に代入する処理のことである。そのため、S1層のサイズはFmap1の縦横の半分になり、面積としては1/4になる。MaxPooling処理では、特徴マップの枚数に変化はないので、Fmap1が4枚なら、S1も4枚となる。

特徴マップFmap2はS1に対し、5*5*4fのConv-karnelで畳み込み処理をして算出される。ここで5*5*4fは5*5ユニット×特徴マップ4枚の畳み込み演算のことであり、4枚で構成されているS1の同じ位置の5*5ユニットに対して畳み込み処理を行っている。つまり3次元ユニット5*5*4fの畳み込み演算を行っている。ここでFmap2は特徴マップとして8枚を持つ構成にしたので、8枚分同じ処理を繰り返す。ここでも結合荷重の値が異なるので、異なる値を持つFmap2が8枚作製されることになる。

S2はS1とまったく同様なMaxPooling処理である。

このような処理の後、従来のニューラルネットワークのHidden層と同様な全結合層HiddenF3(100ユニット)を設け、これにS2の全ユニットを結合する。この全結合層にHiddenという名前を付けたのは従来のニューラルネットワークと同様の層であるためであり、この層だけがHiddenn(隠れた層)という訳ではない。最後のOutput層と全結合層を全て結合する。

各層をつなぐ結合荷重を図2の下の方に橙色で囲んだW10、W21、W32、W43などで示した。ここで添え字のfは特徴マップ(feature map)の枚数を意味している。

図1のニューラルネットワークと図2のディープラーニングを比較するとよく分かるが、ディープラーニングは従来のニューラルネットワークのInput層とHidden層の間に、畳み込み演算とMaxPooling処理をする数層を挟んだ構造をしている事に大きな特徴がある。

これらの構造の差により、画像認識の性能がどの程度変わるのかを次に解説する。

ニューラルネットワークの誤差逆伝播式(バックプロパゲーション)

前の投稿「ニューラルネットワークの基本」に引き続き、バックプロパゲーション(逆伝播)を用いて、重みパラメータとバイアスパラメータを導出する方法について解説します。

最も基本的なニューラルネットワークとして、図1の入力層、隠れ層、出力層で構成された3層構造を考えます(入力層は非線形関数を持たず、ただ入力するだけなので、層としてカウントせず、これを2層構造と言う人もいる)。

図1.基本的なニューラルネットワークのモデル
〇は非線形活性化関数を持たないユニットを、縦線のある①はこれを持つユニットを表す

入力層の入力データ\(x_i\)の数を \(l\)個、出力データ\(y_k\)数を\(n\)個とすると、入力層と出力層のユニット数は各々 \(l+1\)個、\(n\)個となります。、隠れ層のユニット数は任意に設定することができますが、ここでは\(m+1\)個とします。入力層と隠れ層のユニット数に+1があるのは、バイアスパラメータを意味しています。

また、出力データ\(y_k\)に対応する正解データ\(T_k\)を準備する必要があります。正解データは教師データと呼ばれ、機械学習の結果、出力データを到達させる目標点となります。

それでは、ニューラルネットワークのパラメータ(結合荷重)を計算する方法を説明します。

まず、入力層に入力されたデータ\(x_i\)と隠れ層への入力値\(a_j\)、出力値\(z_j\)と出力層への入力値\(b_k\)、出力値\(y_k\)の間には、前の投稿の式(3)から、次式が得られます。

\[\begin{eqnarray*}
a_j&=&\sum_{i=1}^{l} w_{ji} x_i +w_{j0} \qquad (1)\\
\\z_j&=&f( a_j) \qquad \qquad \qquad (2)\\
\\b_k&=& \sum_{j=1}^{m} w_{kj} z_j +w_{k0} \qquad (3)\\
\\y_k&=&g( b_k) \qquad \qquad \qquad (4)
\end{eqnarray*}\]

ここで、\(f()\)、\(g()\)、\(w_{ji}\)、\(w_{kj}\)は隠れ層と出力層の非線形活性化関数と結合荷重(重みパラメータとバイアスパラメータ)を表しています。\(w_{ji}\)は隠れ層 j 番目のユニットと入力層 i 番目のユニットをつなぐ荷重結合で、\(w_{kj}\)は出力層 k 番目のユニットと隠れ層 j 番目のユニットをつなぐ結合荷重です。

非線形活性化関数として、シグモイド関数やハイパボリックタンジェント関数、Softmax関数が用いられるので、文末にそれらの関数と微分形を整理しておきます。

さて、入力データと正解データからパラメータを算出する目的は、出力値\(y_k\)を教師データ\(T_k\)に近づけることです。従って、出力値\(y_k\)と教師データ\(T_k\)との乖離を示す二乗誤差Eを最少にする結合荷重\(w_{ji}\)、\(w_{kj}\)を求めます。

\[E=\frac { 1 }{ 2 } \sum _{ k=1 }^{ n }{ { \left( { y }_{ k }-{ T }_{ k }\right)}^{ 2 }} \qquad (5)\]

先ず最初に、出力層と隠れ層をつなぐ結合荷重\(w_{kj}\)を、学習率ηを用いて求めます。1回の学習における微小更新量\(\Delta w_{kj}\)を次式のように設定します。

\[\Delta { w }_{ kj }=-\eta \frac {\partial E}{ \partial { w }_{ kj }}\qquad (6)\]

式(6)は一見どのように導出されたのか不思議に思われるかもしれないが、これはただ単に荷重結合\(w_{kj}\)が誤差Eに与える影響∂E/∂\(w_{kj}\)に対し、学習率ηで、Eが小さくなる方向に(-符号をつけて)\(w_{kj}\)を更新する、ということを意味しているに過ぎません。

式(6)は連鎖則(chain rule)により次式のように書くことができます。

\[\Delta { w }_{ kj }=-\eta \frac { \partial E }{ \partial {y}_{k}} \frac { \partial {y}_{k}}{ \partial { b}_{ k } } \frac { \partial { b}_{ k } }{ \partial { w }_{ kj } }\qquad (7)\]

式(7)の各項を見ていきましょう。

式(5)より

\[\frac { \partial E }{ \partial {y}_{k}}=\left( {y}_{k}-{ T }_{ k } \right)\qquad (8)\]

式(4)より

\[\frac { \partial { y }_{ k } }{ \partial { b }_{ k } } =\frac { \partial g\left( { b }_{ k } \right)}{ \partial { b }_{ k } } =g^{ \prime }\left( { b }_{ k } \right) \qquad (9)\]

式(3)より

\[\frac { \partial { b }_{ k } }{ \partial { w }_{ kj } } =\frac { \partial \sum _{ k=1 }^{n}{{w}_{ kj}{ z}_{j}}}{ \partial { w }_{ kj }}={z}_{j}\qquad (10)\]

よって、式(8)、(9)、(10)を用いることで、荷重結合の更新量は次式で表されます。

\[\begin{eqnarray*}\Delta {w}_{kj}&=&-\eta\left({y}_{k}-{T}_{k}\right)g^{\prime}\left({b}_{k}\right)z_j\qquad(11)\\ \\&=&-\eta{\delta}_{k}z_j\qquad(12)\end{eqnarray*}\]

ここで、\(\delta_k = (y_k-T_k)g'(b_k)\)と置き換えています。

以上のように、結合荷重の更新量は式(12)で表されるので、p回学習した結合荷重を\(w_{kj}^p\)で表すと

\[{ w }_{ kj }^{ p+1 }={ w }_{ kj }^{ p }+\Delta { w }_{ kj}\qquad (13)\]

となります。出力\(y_k\)が教師データ\(T_k\)に近づくと、式(11)の荷重結合の更新量も小さくなり、収束に向かうことが分かります。

次に、隠れ層と入力層の間の荷重結合の微小更新量\(\Delta w_{ji}\)を式(6)と同様に設定します。

\[\Delta { w }_{ ji }=-\eta \frac {\partial E}{ \partial { w }_{ ji }}\qquad (14)\]

隠れ層からの出力\(z_j\)は出力層の全てのユニットに広がって連結された後に、誤差Eに影響するために、連鎖則(Chain Rule)では、連結されている全てのユニットを考慮して、式(14)は次式のように展開します。

\[\begin{eqnarray*}\Delta { w }_{ ji }&=&-\eta  \frac { \partial E}{ \partial { z }_{ j } }\frac { \partial { z }_{ j } }{ \partial { a }_{ j } } \frac { \partial { a }_{ j } }{ \partial { w }_{ ji } }\\ \\&=&-\eta  \frac { \partial \left\{ \sum _{ k=1 }^{ n }{  { E }}\right\} }{ \partial { z }_{ j } }\frac { \partial { z }_{ j } }{ \partial { a }_{ j } } \frac { \partial { a }_{ j } }{ \partial { w }_{ ji } }\\ \\&=&-\eta \left\{ \sum _{ k=1 }^{ n }{ \frac { \partial E }{ \partial { z }_{ j } }}\right\} \frac { \partial { z }_{ j } }{ \partial { a }_{ j } } \frac { \partial { a }_{ j } }{ \partial { w }_{ ji } }\qquad (15)\\ \\&=&-\eta \left\{ \sum _{ k=1 }^{ n }{ \frac { \partial E }{ \partial { y }_{ j }}\frac { \partial { y }_{ j } }{ \partial { b }_{ j } } \frac { \partial { b }_{ j }}{ \partial { z }_{ j } }}\right\} \frac { \partial { z }_{ j } }{ \partial { a }_{ j } } \frac { \partial { a }_{ j } }{ \partial { w }_{ ji } } \qquad (16)\end{eqnarray*}\]

式(16)の各項を見ていきます。

式(8)より、\(\partial E/\partial y_k\)が、式(9)より、\(\partial y_k/\partial b_k\)が得られ、また

\[\frac { \partial { b }_{ k } }{ \partial { z }_{ j }} =\frac { \partial \sum _{ k=1 }^{ n }{{w}_{ kj }{z}_{k}}}{ \partial {z}_{j}}={w}_{ kj }\qquad (17)\]

となる。式(2)より

\[\frac { \partial { z }_{ j } }{ \partial { a }_{ j } } =\frac { \partial f\left( { a }_{ j } \right)}{ \partial { a }_{ j } } =f^{ \prime }\left( { a }_{ j } \right)\qquad (18)\]

となり、式(16)の最後の項は

\[\frac { \partial { a }_{ j } }{ \partial { w }_{ ji } } =\frac { \partial \sum _{ i=1 }^{ l }{ { w }_{ ji }{ x }_{ i } }}{ \partial { w }_{ ji } } ={ x }_{ i }\qquad (19)\]

となる。よって

\[\Delta { w }_{ ji }=-\eta \left\{ \sum _{ k=1 }^{ n }{ \left( { y }_{ k }-{ T }_{ k } \right) g^{\prime}\left( { b }_{ k } \right) { w }_{ kj } } \right\} f^{ \prime }\left( { z }_{ j } \right) { x }_{ i }\qquad (20)\\ =-\eta \left\{ \sum _{ k=1 }^{ n }{ { w }_{ kj }{ \delta}_{k}}\right\} f^{\prime}\left( { z }_{ j } \right) { x }_{ i }\qquad (21)\]

\[ =-\eta { \delta}_{j}{ x }_{ i }\qquad (22)\]

のように荷重結合の更新量が得られました。ただし、ここでは次式を利用しています。

\[{ \delta }_{ j }=f^{ \prime }\left( { z }_{ j } \right) \sum _{ k=1 }^{ n }{ { w }_{ kj }{ \delta}_{ k } } \qquad (23)\]

従って、式(13)と同様に、p回の更新によって、入力層と隠れ層の間の荷重結合\(w_{ji}^p\)は、次式のように表されます。

\[{ w }_{ ji }^{ p+1 }={ w }_{ ji }^{ p }+\Delta { w }_{ ji }\qquad (24)\]

式(13)と合わせると、全ての結合荷重が算出できました。これがニューラルネットワークの誤差逆伝播で行うパラメータ更新の内容です。

多くのデータを用いて学習させ、結合荷重を収束させて、決定することが出来たならば、それを用いてニューラルネットワークの式(1)~(4)を構築します。そして、新たな入力データに対してフィードフォワードの計算することで、簡単に出力を得ることができます。その出力は、新たな入力データを過去データに基づいて判断した答えというになります。

ただ、学習用のデータセットに対しては式(5)の誤差Eが局所的極小点(Local Minimum)に落ち込み比較的小さい値を示すものの、その後の新規データに対してはEの値が大きく、結果がよくないことがしばしば起こります。これを過学習(overfitting)と言います。この過学習を防ぐための工夫について、次回お話します。
---------------------------
<お勧め書籍>
機械学習について丁寧に書かれた良書です。本格的に勉強したい人には必携のお勧め本です。

======== 非線形活性化関数 ========

シグモイド関数

\[h\left( x \right) =\frac { 1 }{ 1+exp\left( -x \right)}\qquad (a1)\]

\[\frac { \partial h\left( x \right)}{ \partial x } =h\left( x \right) \left( 1-h\left( x \right) \right) \qquad (a2)\]

ハイパボリックタンジェント関数

\[h\left( { x } \right) =tanh\left( x \right)=\frac { exp\left( x \right) -exp\left( -x \right)}{ exp\left( x \right) +exp\left( -x \right)}\qquad (a3)\]

\[\frac { \partial h\left( x \right)}{ \partial x } =1-h\left( x \right) \cdot h\left( x \right)\qquad (a4)\]

Softmax関数

\[h\left( { x } \right) =\frac { exp\left( { x }_{ i } \right)}{ \sum _{ j=1 }^{ n }{ exp\left( { x }_{ j } \right)}}\qquad (a5)\]

\[\frac { \partial h\left( { { x }_{ i } } \right)}{ \partial { x }_{ i } } =h\left( { x }_{ i } \right) \qquad (a6)\]

Softmax関数はその層にある全ユニットの出力値の合計を分母とし、注目ユニットの出力を分子に持っています。これは全てのユニットの出力合計を1に規格化するためであり、出力を確率に変換する際などに利用されます。

ニューラルネットワークの基本 ~フィードフォワードネットワーク~

人工知能の代表的な技術の一つに人工ニューラルネットワーク(Artificial Neural Network)があります。

人工ニューラルネットワークは、脳の神経細胞ニューロンの構造を真似て作成したもので、複数のニューロンが存在する層を積層し、異なる層のニューロンを接続して信号を伝達します。

今、\(p\)番目の層(\(p\)層とする)の\(j\)番目のユニット(ニューロン)について考えます。\(p-1\)層の\(i\)番目のユニットの出力を\(x_i\)とすると、これに重みパラメータ\(w_{ji}^{(p)}\)を乗じた項の線形和\(a_j\)が\(p\)層の\(j\)番目のユニットへの入力となります。

\[a_j= \sum_{i=0}^{m} w_{ji}^{(p)}x_i \qquad (1)\]

ここで、\(w_{ji}^{(p)}\)は\(p-1\)層の\(i\)番目のユニットから\(p\)層の\(j\)番目のユニットへの重みパラメータ\(w\)を表しており、\(a_j\)は活性と呼ばれます。

そして、\(p\)層、\(j\)番目のユニットへの入力\(a_j\)は、微分可能な非線形活性化関数\(h()\)により出力\(z_j\)に変換されます。

\[z_j=h(a_j) \qquad (2)\]

ここでは\(i=0\)の時、\(x_0=1\)として、入力信号の影響を受けない項\(w_{j0}^{(p)}\)としています。これをバイアスパラメータと呼びます。

図1 ニューラルネットワークの構成図

重みパラメータとバイアスパラメータを区別し、式(1)、(2)をまとめて書くと、

\[z_j=h( \sum_{i=1}^{m} w_{ji}^{(p)}x_i +w_{j0}^{(p)}) \qquad (3)\]

となり、\(p\)層の\(j\)番目のユニットへの入力\(x_i\)と出力\(z_j\)が表されます。

図1では、\(p-1\)層の全てのユニットから\(p\)層の\(j\)番目のユニットへの接続線しか表示されていないのですが、\(p-1\)層の全てのユニットは\(p\)層の全てのユニットに接続されています。

そして、重みパラメータとバイアスパラメータの値、および非線形活性化関数により、入力を所望の出力に変換させることを狙いとしています。

非線形活性化関数\(h()\)には、ロジステックシグモイド関数やtanh関数などのシグモイド関数が利用されます。

ロジステックシグモイド関数 \(\sigma\left(\right)\)

\[\sigma \left( a_j \right) =\frac { 1 }{ 1+exp\left({ -a_j }\right) } \qquad (4)\]

ハイパーボリックタンジェント関数 \(tanh\left(\right)\)

\[tanh \left( a_j \right) =\frac { exp\left({ a_j }\right)-exp\left({ -a_j }\right) }{ exp\left({ a_j }\right)+exp\left({ -a_j }\right) } \qquad (5)\]

式(3)の出力\(z_j\)は次の層への入力信号となり、順次これが繰り返され、最終的な出力が得られます。

分かり易い例として、図1のような、\(p-1\)層が入力層で、\(p\)層が隠れ層、\(p+1\)層が出力層となる3層構造を考えてみましょう。

これを用いて、例えば、30画素×30画素の白黒画像の数字0~9を認識させる場合であれば、入力層のユニット数を900個とし、ここに900画素の輝度値を入力します。つまり、輝度値が図1の\(x_i\)となります。ただし、輝度値\(x_i\)は0~1の間に収まるように規格化するのが一般的です。そして、式(3)を用いて隠れ層の出力\(z_j\)を計算します。この出力が3番目の出力層への入力信号となります。

隠れ層のユニット数は自由に設定することができます。言い換えると、性能が良くなるユニット数を実験から見出さねばなりません。

出力層のユニット数は10個とし、数字の0~9に対応させます。そして、例えば、数字の2の画像(900画素の輝度値)を入力したら、その正解出力は、出力層の2番目のユニットが1となり、その他は0となります。数字の5であれば、正解出力は出力層の5番目のユニットが1となり、その他は0となります。このような正解出力が出るように重みパラメータとバイアスパラメータを決定します。正解出力から逆方向に遡ってパラメータを決める過程をバックプロパゲーションと呼びます。また、0~9までの数字画像を次々と入力し、正解出力を与えて、その計算過程にあるパラメータを決めるプロセスは、まるで機械が学習をしているようなので、機械学習と呼ばれます。

次回は、バックプロパゲーションによりパラメータを算出する方法を解説します。

---------------------------
<お勧め書籍>
機械学習について丁寧に書かれた良書です。本格的に勉強したい人には必携のお勧め本です。

人工知能は技術屋なら誰でも使えるようになる

人工知能と聞くと、技術屋であっても「自分には関係ない世界の話だ」とか、「理論が難しくて理解できない」、などと反応されるかもしれません。

しかし、人工知能は決して難しい技術ではありません。

基本的な数学が分かる人であれば、少し努力すれば、誰でも人工知能技術を理解し、利用できるようになります。また、技術屋であれば、自分でコーディングして、これを作ることも決して無理なことではありません。

基本的なことをしっかり把握すれば、後は慣れることで、深く理解することができます。

人工知能という技術は、人間のような問題処理能力を持つコンピュータソフトのことであり、最近、急速に進化してきました。

例えば、画像認識の分野では、ここ数年で飛躍的に性能を上げてきており、手書き文字が何であるかを認識したり、写真に写っている多数の対象物が何であるかをそれぞれ識別するまでになってきました。

また、音声認識などでも、とても高い認識率を出しており、その利用価値はますます高まっています。

人工知能の代表的な技術は、人工ニューラルネットワーク(神経回路網)です。

人間の脳の構造を真似てプログラミングされた計算手法ですが、人間の脳を真似た所が非常に重要で、その構造ゆえに、人間の脳のように、多種多様な問題に対応することができるのです。

これまでのプログラミングでは、多くの場合、適用先は限定的でした。しかし、ニューラルネットワークは幅広い問題に適用できるのです。

皆さんもご自分の問題の解決に、是非とも人口知能を利用してみてください。うまくいけば、人工知能の有能性に驚かれることでしょう。

コンピューターによる画像認識を今の仕事の改善に利用できないか、とか、大量の過去データを元にして、今後の傾向の予想したい、とか、あるいは今起きている事象から次に起こりうる事象を予想できるか、など、様々な問題の解決に利用できます。

是非とも、人工知能技術を使って、ものごとを論理的に捉え、有利に進展させることを考えられるとよいのではないかと思います。

このサイトでは人口知能の利用方法についてお伝えし、皆様がこの技術を使えるようになれるようにサポートします。

ただし、人工知能を用いれば何でも解決できる、というモノではないことは、理解しておく必要があります。まだまだ発展途上の技術です。