コンボリューショナル(畳み込み)ニューラルネットワークConvolutional Neural Network(CNN)の誤差逆伝播法

従来のニューラルネットワークの誤差逆伝播法に関してはすでに解説したので、今回はディープラーニングでよく用いられるコンボリューショナル(畳み込み)ニューラルネットワークの誤差逆伝播法(Back Propagation)について解説する。

コンボリューショナルニューラルネットワークの構造を解説した投稿の図2を念頭に置きながら、以下の式の意味を理解して頂きたい。

先ず、\(p-1\)番目の層は2次元配列\((i,j)\)のユニットで構成された、出力\(X_{i j}^{p-1}\)のコンボリューション層であり、\(p\)番目の層はk座標にe枚の特徴マップを持つ層であるとする。コンボリューションのカーネルサイズをm×m、カーネルの2次元座標を\((a,b)\)、結合荷重を\(w_{abk}\)とすると、\(p\)番目の層への入力\({Y}_{ijk}^{p}\)と出力\({X}_{ijk}^{p}\)は式(1)、(2)で表される。

\[\begin{eqnarray*}
{Y}_{ijk}^{p} &=& \sum _{ a=0 }^{ m-1 }{ \sum _{ b=0 }^{ m-1 }{ {w}_{abk} {X}_{ (i+a)(j+b) }^{p-1}} }\qquad(1)\\
\\X_{ijk}^{p} &=& f(Y_{ijk}^{p}) \qquad \qquad \qquad (2)
\end{eqnarray*}\] ここで\(k\)は特徴マップの枚数のインデックスであるので\(0~e-1\)の値をとる。fは非線形活性化関数を表している。\(p-1\)番目の層がd枚の特徴マップで構成される場合は、式(1)は次式のようになる。

\[{Y}_{ijk}^{p}=\sum _{ c=0 }^{ d-1 }\sum _{ a=0 }^{ m-1 }{ \sum _{ b=0 }^{ m-1 }{ {w}_{abck} { X }_{ (i+a)(j+b)c}^{p-1} } }\qquad(3)\]ここで\(c\)は\(p-1\)番目の層の特徴マップのインデックスを表す。式(3)は式(1)と同様の形をしているので、以下では式(1)を例として話を進める。

誤差逆伝播法では各層の出力の誤差を\(E\)とすると、1回の学習における結合荷重の微小更新量\(\Delta {w}_{abk}\)は学習率\(\eta\)を用いて次式のように設定される。
\[\Delta {w}_{abk} = -\eta\frac {\partial E}{ \partial {w}_{abk}} \qquad (4) \] コンボリューション層のユニット数がN×Nで構成されているとすると、コンボリューションのカーネルが移動できるユニット数は(N-m+1)×(N-m+1)となる。これら全てが結合荷重\({w}_{abk}\)で重み付けされているので、式(4)はChain rule(連鎖法則)により次のように変形される。
\[\begin{eqnarray*}
\Delta {w}_{abk} &=& -\eta \sum _{ i=0 }^{ N-m }{ \sum _{ j=0 }^{ N-m }{ \frac { \partial E }{ \partial {X}_{ijk}^{p}} \frac { \partial {X}_{ijk}^{p}}{ \partial {Y}_{ijk}^{p}} \frac { \partial {Y}_{ijk}^{p} }{ \partial {w}_{abk}}}} \qquad(5)\\
\\ &=& -\eta \sum _{i=0}^{N-m}{ \sum _{ j=0 }^{ N-m }{ \frac { \partial E }{ \partial {X}_{ijk}^{p}} \frac { \partial \left( f\left( {Y}_{ijk}^{p} \right)\right)}{ \partial {Y}_{ijk}^{p}} \cdot {X}_{ (i+a)(j+b)}^{p-1}}} \qquad(6) \\
\\ &=& -\eta \sum _{i=0}^{N-m}{ \sum _{ j=0 }^{ N-m }{ \frac { \partial E }{ \partial {X}_{ijk}^{p}} f^{ \prime }\left( {Y}_{ijk}^{p} \right) \cdot {X}_{ (i+a)(j+b)}^{p-1}}} \qquad(7)
\end{eqnarray*}\]ここでは式(1)を偏微分して得られる次式(8)を用いた。
\[X_{(i+a)(j+b)}^{p-1}=\frac { \partial {Y}_{ijk}^{p} }{ \partial {w}_{abk} } \qquad(8)\]
式(7)の\(X_{(i+a)(j+b)}^{p-1}\)はフォワードプロパゲーションの時に得られる値であり、\(f^{ \prime }\left( {Y}_{ijk}^{p} \right)\)は微分した活性化関数に入力値を代入すれば得られる値で、共に既知である。出力に関する微分誤差\(\partial E/\partial {X}_{ijk}^{p}\)が分かれば、結合荷重の微小更新量\(\Delta {w}_{abk}\)を得ることができる。

出力に関する微分誤差は、出力層の出力と教師画像との二乗誤差の微分値を最初の値とし、それを前の層に順番に逆伝播して利用するものである。従って、p番目のコンボリューション層からp-1番目の層へ逆伝播する方法が分かれば、式(7)の\(\partial E/\partial {X}_{ijk}^{p}\)は求められ、荷重結合の微小更新量を得ることができる。

一般に、出力層はコンボリューション層ではなく普通の全結合層であるので、出力層の出力と教師画像との微分誤差は従来のニューラルネットワークの誤差逆伝播法に記載した方法で算出できる。ここではコンボリューション層での誤差逆伝播法について説明する。

p番目のコンボリューション層はe枚の特徴マップで構成されているので、p-1番目の層の微分誤差は次式のように展開される。
\[\begin{eqnarray*}
\frac { \partial E }{ \partial {X}_{ij}^{p-1}} &=& \sum _{c=0} ^{e-1} \sum _{a=0} ^{m-1}{ \sum _{b=0}^{m-1}{ \frac {\partial E}{\partial {X}_{(i-a)(j-b)c}^{p} } \frac { \partial {X}_{(i-a)(j-b)c}^{p} }{ \partial {Y}_{(i-a)(j-b)c}^{p}} \frac { \partial {Y}_{(i-a)(j-b)c}^{p} }{ \partial {X}_{ij}^{p-1}} }} \quad(9) \\
\\ &=& \sum _{c=0} ^{e-1} \sum _{a=0} ^{m-1}{ \sum _{b=0}^{m-1}{ \frac {\partial E}{\partial {X}_{(i-a)(j-b)c}^{p} } f^{ \prime }\left( {Y}_{(i-a)(j-b)c}^{p} \right) \cdot {w}_{abc}}} \quad(10)
\end{eqnarray*}\] ここでは式(2)と、式(1)を\(X\)で偏微分して得られる式(11)を用いた。
\[\frac{\partial{Y}_{(i-a)(j-b)c}^{p}}{\partial{X}_{ij}^{p-1}} = w_{abc} \qquad(11)\]p番目の層の\(Y\)や\(X\)の添え字が\(i-a\)や\(j-b\)と表記されているが、式(1)におけるp-1番目の層の\(X\)の添え字\(i+a\)や\(j+b\)と符号が逆になっている。これはフォワードプロパゲーションの畳み込み演算において、p-1番目の層の座標\((i+a,j+b)\)がp番目の層の\((i,j)\)に対応しているので、p-1番目の層の座標\((i,j)\)はp番目の層の\((i-a,j-b)\)に対応するからである。

式(10)の\(\partial E/\partial {X}_{(i-a)(j-b)c}^{p}\)はp番目の層の微分誤差であり既知であるので、前の層に逆伝播される\(\partial E/\partial {X}_{ijk}^{p-1}\)が求められる。

コンボリューション層の誤差逆伝播式は式(9)などに表されるように、サメーション\(\sum\)を複数用いるので、何をしているのか分かりにくいかもしれない。しかし、ここで行っている誤差逆伝播は従来のニューラルネットワークの誤差逆伝播と本質的に同じである。結合荷重で結ばれているユニット間で誤差を伝播しているだけである。ただコンボリューション層では一つの結合荷重が複数のユニット間を結合しているので、それらの誤差を積算しなければならない。そのためにサメーション\(\sum\)が複数個使われることになる。

コンボリューショナルニューラルネットワークでは、マックスプーリング層が用いられるが、この層は単にコンボリューション層のユニットを一定サイズのブロックに区分し、各ブロック内の最大値を持つユニットを抽出する役割を果たす。従って、誤差逆伝播ではプーリング層のユニットをコンボリューション層の各ブロックの最大値を持つユニットに結びつけるだけでよい。

以上のようにして、コンボリューショナルニューラルネットワークに関する誤差逆伝播を計算することができる。

ニューラルネットワークとディープラーニングの構造の比較

ディープラーニングはニューラルネットワークの一形態であり、その層数を深くした構造を持つが、単に層数を深くしただけではなく、入力画像の形状を捉えるための工夫が施されている。今回はその構造について説明する。

まず、画像を認識する従来の基本的なニューラルネットワークの構造を図1に示す。これは多層パーセプトロンと呼ばれるニューラルネットワークで、この例では入力層1層、中間層であるHidden層1層、出力層1層の3層構造を有している。

図1 ニューラルネットワークの構造

Input層には写真などの2次元の画像が用いられるが、図1に示したように、2次元の画像は1次元に変換されて、入力される。この2次元から1次元への変換は、2次元の各行を単純に1行につないで並べるだけの変換である。

手書き数字(0~9)画像の代表的なデータベースであるMNISTを用いて画像認識を行う場合を例にとれば、Input層は手書き数字の画像サイズ28画素×28画素=784ユニットとなる。Hidden層には100ユニット程度が用いられるケースが多い。最後のOutput層は認識する数字の種類0~9の数と同じになるので、10ユニットとなる。つまり、入力画像が「0」であれば出力層の上から1番目のユニットの出力値が最大となり、入力画像が「1」であれば上から2番目のユニットの出力値が最大、「2」は3番目、「3」は4番目、、、「9」は10番目のユニットの出力が最大となるように機械学習させる。

ニューラルネットワークを作成する上での重要なポイントは結合荷重の設定である。図1の下の方に具体的な結合荷重の数を示した。W10は入力層とHidden層の間、W21は出力層とHidden層の間の結合荷重である。添え字wは荷重パラメータであり、添え字bはバイアスパラメータを示す。初期値にはランダム値が設定される。

このように従来のニューラルネットワークでは、図1のようなシンプルな層構造を持っている。

これに対し、ディープラーニングで画像を認識させる場合には、図2のような構造を取る。

図2 ディープラーニングの構造

ここでは画像認識で最も高い性能を上げているコンボリューショナルニューラルネットワークで手書き数字画像を認識する場合の一例を示した。図2に上の方に青い枠で囲まれた部分がディープラーニングの構成層を示し、その下の緑色の枠で囲まれた部分が演算に用いるフィルターである。その下に層を構成するユニットの模式図が描かれており、そのユニット数が紫色の下線を持つ数字で示されている。一番下のオレンジ色で囲まれた部分が各層間の結合荷重の構成を示している。

これらを具体的に説明する。図2の上の方で青い枠に囲まれている各層は、Input層、特徴マップ層Fmap1、MaxPoolingされた層S1、特徴マップ層Fmap2、全結合層HiddenF3、Output層で構成されている。

Input層には2次元画像28*28画素をそのまま使う。特徴マップ層Fmap1の1ユニットはInput層に5*5画素の畳み込みカーネルConv-karnelフィルタを掛けることで算出される。Input層28*28の画像の上に橙色の正方形で示されているカーネル領域を左から右に順番に移動させて、Fmap1の全てのユニットの値を算出する。Fmap1は4枚で構成されているので、この操作を4回繰り返して、4枚のFmap1を算出する。同じ操作を4回繰り返して4枚のFmap1を生成するが、演算に用いる結合荷重が異なるので、4枚のFmap1は全て異なる値を持つ。結合荷重の初期値はランダムに設定される。機械学習の過程では教師データの値をフィードバックするバックプロパゲーションにより結合荷重の値が更新される。

このようにして生成されたFmap1層に2*2ユニットのMaxPooling処理をして、S1層を算出する。2*2ユニットのMaxPooling処理とは、縦2横2のユニットの中の最大値をS1層に代入する処理のことである。そのため、S1層のサイズはFmap1の縦横の半分になり、面積としては1/4になる。MaxPooling処理では、特徴マップの枚数に変化はないので、Fmap1が4枚なら、S1も4枚となる。

特徴マップFmap2はS1に対し、5*5*4fのConv-karnelで畳み込み処理をして算出される。ここで5*5*4fは5*5ユニット×特徴マップ4枚の畳み込み演算のことであり、4枚で構成されているS1の同じ位置の5*5ユニットに対して畳み込み処理を行っている。つまり3次元ユニット5*5*4fの畳み込み演算を行っている。ここでFmap2は特徴マップとして8枚を持つ構成にしたので、8枚分同じ処理を繰り返す。ここでも結合荷重の値が異なるので、異なる値を持つFmap2が8枚作製されることになる。

S2はS1とまったく同様なMaxPooling処理である。

このような処理の後、従来のニューラルネットワークのHidden層と同様な全結合層HiddenF3(100ユニット)を設け、これにS2の全ユニットを結合する。この全結合層にHiddenという名前を付けたのは従来のニューラルネットワークと同様の層であるためであり、この層だけがHiddenn(隠れた層)という訳ではない。最後のOutput層と全結合層を全て結合する。

各層をつなぐ結合荷重を図2の下の方に橙色で囲んだW10、W21、W32、W43などで示した。ここで添え字のfは特徴マップ(feature map)の枚数を意味している。

図1のニューラルネットワークと図2のディープラーニングを比較するとよく分かるが、ディープラーニングは従来のニューラルネットワークのInput層とHidden層の間に、畳み込み演算とMaxPooling処理をする数層を挟んだ構造をしている事に大きな特徴がある。

これらの構造の差により、画像認識の性能がどの程度変わるのかを次に解説する。

人工意識:脳のようなニューラルネットワークを作れば「意識」は生まれるか(3)

意識とニューラルネットワークとの関係について、もう一つの重要な観点をお話します。

そもそも私たちはモノを認識する時、まず最初に、目の網膜に投影された画像の色を認識します。赤、緑、青、黄色、銀色、白、黒など、様々な色を認識し、次に色の変化から形を認識し、背景なども認識し、対象物が何であるかを認識します。「この色とこの形だと、これは○○だ」のように、対象物を認識する根拠として、色や形を使います。「橙(だいだい)色で、この丸みで、表面のブツブツ状態からして、これはミカンだ」などと判断します。

これに対し、コンピュータによるニューラルネットワークなどの画像認識では、対象物の色や形など全ての情報は数値に変換されて、ニューラルネットワークに入力され、演算処理がなされます。つまり、ニューラルネットワークの中では対象物の色や形は跡形もなくなくなり、全ての情報は数値に変換され、演算されて認識されるのです。画像認識で最も高い性能を出しているディープラーニングのコンボリューショナル・ニューラルネットワークでも、形の特徴を捉える工夫はあるものの、全て数値で演算され、認識されるところは同じです。

このように人の脳とコンピュータのニューラルネットワークは根本的に認識過程が異なるのです。

ここで重要なことは、人間の目や脳が、自然界には存在しない「色」を作り出している事です。自然界には本来「色」なるものは存在しません。自然界に存在するのは光(電磁波)です。この光を目の網膜や脳が色に変換して、つまり、色を作り出して認識しているのです。

「そんなことはないよ!そこに赤いリンゴがあるじゃないか。赤い色が存在するから赤いリンゴがあるんだ」と思う人も多いと思いますが、実は「赤い」リンゴは人間の脳が作り出した存在で、そこにあるのは「波長700nmの電磁波を反射する」リンゴなのです。網膜や脳により、波長350nm~750nmの電磁波(光)は、紫、青、緑、黄、赤などに変換されます。この変換により、リンゴは赤色として認識されるのです。七色の虹も同様で、空に浮かんでいるのは単なる水蒸気ですが、水蒸気により電磁波が波長ごとに分離し(屈折率の違いから)、それが目や脳により七色に色付けされて、カラフルな虹として認識されるのです。

これに対してコンピュータでは、赤、緑、青(RGB)という三原色の光を数値に変換して入力し、演算処理をします。つまり、色としては認識せず、RGBの数値を用いて認識するのです。

つまり、光の波長(数値)を色に変換して色として認識する人間と、色を数値に変換して数値の大小で認識するコンピュータという対称的な構図が存在します。

私達が感知することのできないテレビ電波などの電磁波が全く無味乾燥な存在であるのと同じように、波長350nm~750nmの電磁波(光)も本来無味乾燥な存在のはずです。人の脳がコンピュータのように認識するのであれば、それをわざわざ色に変換する必要はありません。ディープラニングが行っているように、波長400nm、550nm、700nm(青、緑、赤)の光の強度の大小で演算処理をして、画像認識をすればよいのです。それにもかかわらず、なぜ目や脳は電磁波を味わい深い豊かな色に変換するのでしょうか?

私には、それは人間の「意識」に対して、外界の状況をテレビのように投影するためのように思われるのです。つまり、人間の「意識」という主体が外界を分かり易く認識できるように、目や脳が外界の様子を投影して見せているように思えるのです。

もしそうであるならば、コンピュータ上で動作するニューラルネットワークをいくら複雑に作ろうとも、いくら膨大なシステムにしようとも、人間の意識が生まれることはないと言えるでしょう。

人工意識:脳のようなニューラルネットワークを作れば「意識」は生まれるか(2)

2016/12/24昼過ぎにNHK教育番組を見ていたら、「人工意識」なるものを作る研究を行っている大学教授が出ていた。最近の意識に関する研究の進展から、意識は脳全体の情報を統合的に取り扱うことで生成される事が分かって来たので、これを人工的にコンピュータ内に作る研究を進めている、と発言していた。

研究は多種多様な観点から進められるべきだし、このような研究が行われることに全く反対はない。いろんな人がいろんな観点から自分の信じる研究を進めればいいと思う。ただ、その際に注意してほしいことは、まだ分からないこと、解明されていない事は「まだ分からない、解明されていない」とはっきり言う事だ。

脳と同じようなニューラルネットワーク構造をコンピュータ内に作れば意識が生まれる可能がある、という発言は、人間は機械のようなモノ、と捉えた場合に単純に導かれる発想と言える。私はそんな発想は思慮が足りないと考えるが、それは前の記事でも書いた数学的処理の観点からだけでなく、知識獲得の本質的な観点からも重要な点を見落としていると考えるからだ。

マイケル・ポランニーという天才科学者・哲学者が書いた「暗黙知の次元」という本がある。10年ほど前に読んで深く感動したことを今もよく覚えている。その中に「あるレベル(次元)の機能を統合的に制御するには、それより上のレベル(次元)の機能が必要である」という内容の記述があった。例えば、自転車に乗るためには、下位レベルの機能である手足が動くだけではダメで、それらを統合的に制御する上位レベルの機能である脳が必要である、ということだ。脳が手や足の動きを統合的に制御して初めて自転車にうまく乗れるようになる。

これは脳の働きに焦点を当てた場合にも適用される。脳は、モノを見たり(画像認識)、聞いたり(音声認識)、計算したり(演算処理)する各機能を有しているが、これらをある目的のために行わせたり、制御したりする統合的働きをするのが意識である。ならば、意識はこれらの機能より高いレベル、高い次元の存在でなければならない。つまり、ニューラルネットワークで実施した画像認識や音声認識を統合的に制御する意識の役割は、同じ次元であるニューラルネットワークでは担う事ができないことになる。
次元が異なるということは、基本構造が異なることを意味しているので、意識がその役割を果たすにはコンピュータ内に構築する数学処理とは異なる構造が必要と考えられる。

このような観点からも、意識とは何かを考察することが重要だと思っている。

人工意識:脳のようなニューラルネットワークを作れば「意識」は生まれるか(1)

人工知能を研究している大学の先生の中には、人工知能の代表的な手法であるニューラルネットワークの結合数を人間の脳のニューロンの結合数並みに増やしていくと、量が質に変わり、人間のような「意識」がコンピュータにも現れる、と言う人がいる。

一般の人もこれに同調して、「なるほど、人間の脳と似たような人工神経回路網をコンピュータ内に作れば、人と同じような意識がでてきても不思議はない」と言う人が少なからずいる。

全く笑止千万だ。

コンピュータ内に作られたニューラルネットワークを支配するのは数学計算である。ディープラーニングの層数を現状の10層から1兆層に増大したとしても、数学的処理の層数が10層から1兆層に増えるだけで、そこに新たな生命体の息吹である「意識」が生まれることは決してない。あくまでもプログラム通りに1兆層の計算を行うだけであり、コンピュータに意識が生まれることはあり得ない。

たとえて言うならば、10+10=20 であるが、1兆+1兆=2兆 ではなく、数が大きいので量から質への変換が起こり、2兆+α(計算結果以外のモノ) が正解となる、と主張するようなものだ。数学において、この+α(計算結果以外のモノ)が発生する余地は全くない。

私はディープラーニングの画像認識プログラムや強化学習プログラムを全て自分で作成してきたので、人工知能が内部でどのような計算をしているかは全て把握している。そこで行う計算は四則演算(掛け算、割り算、足し算、引き算)である。\(\sin { \theta } \)や\(e^x\)や\(\sqrt {x}\)などの計算が入ることがあるが、これらもコンピュータ内では四則演算で近似されて計算されるので、コンピュータ内での演算は全て四則演算である。それゆえにディープラーニングで四則演算を1兆回行おうが、1兆の1兆乗回行おうが、数値計算の誤差は出るが、計算結果以外の何かである+αが生まれることはあり得ない。

もちろん、ニューラルネットワークの層数が1兆個に増えれば、とてつもなく複雑な処理が可能になり、人間の頭脳よりも繊細できめ細やかな処理や表現が可能になるであろう。まるで感情があるかのような発言や行動が出来るようになるであろう。しかし、それはあくまでもプログラム通りに数学演算が多数回行われた結果であり、計算とは別の「何か」「意識のようなモノ」が生成されたということでは決してない。

このような数学の基本法則からして、ニューラルネットワークの層数を人間の脳内のニューロンの結合数に近づけると「意識」が発生するなどという考え方は、まったく滑稽である。後日、別の観点からもこの問題について考察したい。

ニューラルネットワークの訓練の問題点:過学習と局所的極小点

ニューラルネットワークモデルの訓練(training)では、過学習(over-fitting)が起きたり、局所的な極小点に陥り、性能が高くならないという問題が発生することがあります。

過学習
過学習は訓練データの数に対してパラメータの数が多い場合や、訓練データに偏りがある場合に起き易い現象です。図1はデータ数が少ない場合の入出力のグラフ(横軸入力、縦軸出力)ですが、このようにデータ数が少ない場合、各データにほぼ一致する曲線を見出す(パラメータを決定する)ことは難しくありません。

そして、もし図1の数少ないデータが、対象とするデータ全体の分布を代表していいるのであれば、図1の曲線は小さい誤差関数E(前の記事の式(5))を持つ、大域的な最小点に近い、正しい曲線を表していることになります。

しかし、もし図1のデータが、対象とするデータ全体の分布を代表しておらず、データ数を増やすと図2のような分布を示すのであれば、図1の曲線は過学習を表していることになり、正しい曲線は図2のようになります(図1のデータは全て図2に含まれています)。

また、パラメータの数が少ない場合には、仮にデータ数が少なくとも、図1に示すような複雑な曲線を出すことは出来ず、単純な曲線になるために、過学習が起きにくいという特徴があります。アナロジーで言えば、図1のデータに対して、パラメータが3つの放物線であれば図2のような曲線が得られますが、パラメータが7個の6次方程式であれば図1のような曲線が得られます。

このように過学習が起きやすいかどうかは、訓練データの数や偏り、パラメータの数に依存します。

局所的な極小点
過学習と同様に、ニューラルネットワークの性能が上がらない原因として、局所的な極小点に陥いることが上げられます。

図3は横軸がパラメータの値を、縦軸がニューラルネットワークの出力を示していますが、図の青●に示す局所的極小点につかまってしまい、学習を継続させてもそこから抜け出すことができず、大域的最小点赤●に到達できないことがよくあります。

このような過学習や局所的極小点トラップを防ぐ方法として、次の手段がよく使われます。

  1. 正則化(regularization)
  2. バッチ処理
  3. DropoutやDropconnect

<正則化>
正則化は誤差関数E(前の記事の式(5))に罰則項(penalty)を加えたもので、2次のL2ノルムの場合は下記のように表されます。
\[\widetilde { E } \left( w \right) =\frac { 1 }{ 2 } \sum _{ n=1 }^{ N }{ { \left\{ y\left( { x }_{ n },w \right) -{ T }_{ n } \right\} }^{ 2 } } +\frac { \lambda }{ 2 } { \left\| w \right\| }^{ 2 }\qquad (1)\]

ここで、\({ \left\| w \right\|  }^{ 2 }={ w }_{ 1 }^{ 2 }+{ w }_{ 2 }^{ 2 }+\quad \cdots \quad +{ w }_{ M }^{ 2 }\)であり、\(\lambda\)は係数で、\(n\)はデータ数、\(m\)はパラメータ数です。

式(1)右辺の罰則項\(w_j^2 , j=1,2,・・・,m\)は2乗で効いてくるので、大きな値を取るとその2乗でエネルギーが増大するため、大きな値とはなりにくくなります。逆に0に近づく力を持ちます。しかし、式(1)右辺第1項の二乗誤差にも\(w_j^2\)の項があり、\(w_j\)はある値(仮にpとする)に近づこうとします。つまり、0に近づこうとする罰則項とpに近づこうとする2乗誤差との綱引きの割合が係数\(\lambda\)で決められています。そのために、pだけに近づこうとする過学習を防ぐ効果が出るのです。L2ノルムの正則化は、意味の無い結合荷重\(w_j\)が減衰しやすいことから、荷重減衰(weight decay)とも呼ばれます。

これに対し1次のL1ノルムでは、罰則項として\(w_j\)の絶対値を加えます。

\[\widetilde { E } \left( w \right) =\frac { 1 }{ 2 } \sum _{ n=1 }^{ N }{ { \left\{ y\left( { x }_{ n },w \right) -{ T }_{ n } \right\} }^{ 2 } } +\frac { \lambda  }{ 2 } \sum _{ j=1 }^{ M }{ \left| { w }_{ j } \right|  } \qquad (2)\]

L2ノルムとの違いは、\(w_j\)が1乗か2乗かだけです。罰則項だけを次式のように置くと

\[a=\frac {\lambda}{ 2}\sum_{ j=1}^{ M }{ \left|{w}_{j}\right|} \qquad (3)\]

これは\(w_j\)パラメータ空間の直線式を表しています。\(a\)は\(w_j\)軸との交点となります。分かり易い例を上げるならば、\(w_1=x, w_2=y\)として、図4の\(a=|x|+|y|\)という直線を考えてみましょう(図4の緑色直線)。

この\(a\)が式(3)の罰則項のエネルギーであり、かつ\(\pm a\)がx軸、y軸の交点となります。つまり緑の正方形の辺の上では、全て同じエネルギー値\(a\)を持つことになります。一方、式(2)右辺の第1項の二乗誤差はpという中心点(青点)を持つ円()の半径rの2乗と考えることができます(厳密には楕円だが、簡単のために円とします)。従って、二乗誤差とL1ノルムを加えた合計エネルギーは\(r^2+a\)と解釈することができます。

赤い円緑の正方形は同じ\(x,y\)が満足しなければならないので、円と正方形との交点が求める解となります。そして、合計エネルギー\(r^2+a\)を最小にするのは、図4に示したように、正方形に円が接している場合となります。なぜならば、その場合に円の半径rと正方形の切片\(a\)がともに小さくなるからです。

切片\(\pm a\)の正方形と中心pの円が接する条件には、2種類あります。

(1)中心pが図4の白い背景の上にあり正方形の角に接している場合
(2)中心pが図4の薄青色の背景の上にあり正方形の辺に接している場合(p’)

ここで、薄青色の背景は正方形の辺の延長線が囲む領域です。中心pが白い背景の上にある場合には、円が正方形の角に接する場合にエネルギーが最小となりますが、これは\(x=0, y=a\)や\(x=a, y=0\)などを意味しており、パラメータの一方が0になることを示しています。つまり、L1ノルムの正則化を行うとパラメータの一部が確率的に0になり易い傾向がでてきます。それ故に、L1ノルムの導入はスパースモデリングと呼ばれます。

一方、中心pが薄青色の背景の上にある場合(p’)には、パラメータは両方とも0にはならず、\(x=a/2, y=a/2\)などの値を取り得ます。また、0へのドライビングフォースもありません。このように、L1ノルムによる正則化はパラメータの一部が0になる確率が高くなる、というように解釈すべきだと思います。

<バッチ処理、Dropout>
過学習や局所的極小点トラップを防ぐため、言い換えると、ニューラルネットワークの性能を向上させるために、バッチ処理やDropoutも利用されます。

バッチ処理は、逆伝播法による結合荷重の更新を個々のデータに対して行うのではなく、複数のデータに対して一回行う手法です。これは複数のデータに対する平均的な結合荷重で更新するとも言えます。私のこれまでの実験結果から、バッチ処理はニューラルネットワークの性能向上に効くことが多いと言えます。やはり、個々のデータに対して逐一、逆伝播法で結合荷重を更新すると、その変動が大きくなるため、局所的な最小点に捕まり易くなり、大域的な最小点(最適解)に辿り着きにくくなるように思います。

これに対し、バッチ処理では、複数個のデータに対する平均的な結合荷重で更新するために、結合荷重の変動が比較的小さく、滑らかに収束する傾向があり、局所的な極小点に捕まりにくいために、性能低下が抑制されると考えられます。

ただし、データの種類によっては(例えば、ノイズの小さいデータなど)、バッチ処理ではなく、各データで結合荷重を更新した方が更新速度が速く、短時間で収束することもあるので、バッチ処理が常によいとは言えません。そのあたりは、少し注意が必要です。

また、Dropoutはニューラルネットワークのユニットをランダムに排除しながら、結合荷重を更新することで、局所的な極小点のトラップを抑制したり、層数が多くても逆伝播法による結合荷重の更新が入力層付近であっても適切に行われることを狙ったものです。

私もDropoutの性能を調べるために、DeepLearningによるMNISTデータの手書き数字認識に適用してみました。Dropoutなしの認識正解率が98.9%でしたが、Dropoutを導入しても、ほとんど性能は向上せず、むしろ0.1~0.3%ほど性能が下がりました。すでに十分性能が高かったが故に効果がなかったのかもしれません。そうであれば、Dropoutなどは性能が低いニューラルネットワークに対し、効果があるのかもしれない。このあたりはケースバイケースで、ニューラルネットワークの構成を考えていく必要があるようです。

ニューラルネットワークの誤差逆伝播式(バックプロパゲーション)

前の投稿「ニューラルネットワークの基本」に引き続き、バックプロパゲーション(逆伝播)を用いて、重みパラメータとバイアスパラメータを導出する方法について解説します。

最も基本的なニューラルネットワークとして、図1の入力層、隠れ層、出力層で構成された3層構造を考えます(入力層は非線形関数を持たず、ただ入力するだけなので、層としてカウントせず、これを2層構造と言う人もいる)。

図1.基本的なニューラルネットワークのモデル
〇は非線形活性化関数を持たないユニットを、縦線のある①はこれを持つユニットを表す

入力層の入力データ\(x_i\)の数を \(l\)個、出力データ\(y_k\)数を\(n\)個とすると、入力層と出力層のユニット数は各々 \(l+1\)個、\(n\)個となります。、隠れ層のユニット数は任意に設定することができますが、ここでは\(m+1\)個とします。入力層と隠れ層のユニット数に+1があるのは、バイアスパラメータを意味しています。

また、出力データ\(y_k\)に対応する正解データ\(T_k\)を準備する必要があります。正解データは教師データと呼ばれ、機械学習の結果、出力データを到達させる目標点となります。

それでは、ニューラルネットワークのパラメータ(結合荷重)を計算する方法を説明します。

まず、入力層に入力されたデータ\(x_i\)と隠れ層への入力値\(a_j\)、出力値\(z_j\)と出力層への入力値\(b_k\)、出力値\(y_k\)の間には、前の投稿の式(3)から、次式が得られます。

\[\begin{eqnarray*}
a_j&=&\sum_{i=1}^{l} w_{ji} x_i +w_{j0} \qquad (1)\\
\\z_j&=&f( a_j) \qquad \qquad \qquad (2)\\
\\b_k&=& \sum_{j=1}^{m} w_{kj} z_j +w_{k0} \qquad (3)\\
\\y_k&=&g( b_k) \qquad \qquad \qquad (4)
\end{eqnarray*}\]

ここで、\(f()\)、\(g()\)、\(w_{ji}\)、\(w_{kj}\)は隠れ層と出力層の非線形活性化関数と結合荷重(重みパラメータとバイアスパラメータ)を表しています。\(w_{ji}\)は隠れ層 j 番目のユニットと入力層 i 番目のユニットをつなぐ荷重結合で、\(w_{kj}\)は出力層 k 番目のユニットと隠れ層 j 番目のユニットをつなぐ結合荷重です。

非線形活性化関数として、シグモイド関数やハイパボリックタンジェント関数、Softmax関数が用いられるので、文末にそれらの関数と微分形を整理しておきます。

さて、入力データと正解データからパラメータを算出する目的は、出力値\(y_k\)を教師データ\(T_k\)に近づけることです。従って、出力値\(y_k\)と教師データ\(T_k\)との乖離を示す二乗誤差Eを最少にする結合荷重\(w_{ji}\)、\(w_{kj}\)を求めます。

\[E=\frac { 1 }{ 2 } \sum _{ k=1 }^{ n }{ { \left( { y }_{ k }-{ T }_{ k }\right)}^{ 2 }} \qquad (5)\]

先ず最初に、出力層と隠れ層をつなぐ結合荷重\(w_{kj}\)を、学習率ηを用いて求めます。1回の学習における微小更新量\(\Delta w_{kj}\)を次式のように設定します。

\[\Delta { w }_{ kj }=-\eta \frac {\partial E}{ \partial { w }_{ kj }}\qquad (6)\]

式(6)は一見どのように導出されたのか不思議に思われるかもしれないが、これはただ単に荷重結合\(w_{kj}\)が誤差Eに与える影響∂E/∂\(w_{kj}\)に対し、学習率ηで、Eが小さくなる方向に(-符号をつけて)\(w_{kj}\)を更新する、ということを意味しているに過ぎません。

式(6)は連鎖則(chain rule)により次式のように書くことができます。

\[\Delta { w }_{ kj }=-\eta \frac { \partial E }{ \partial {y}_{k}} \frac { \partial {y}_{k}}{ \partial { b}_{ k } } \frac { \partial { b}_{ k } }{ \partial { w }_{ kj } }\qquad (7)\]

式(7)の各項を見ていきましょう。

式(5)より

\[\frac { \partial E }{ \partial {y}_{k}}=\left( {y}_{k}-{ T }_{ k } \right)\qquad (8)\]

式(4)より

\[\frac { \partial { y }_{ k } }{ \partial { b }_{ k } } =\frac { \partial g\left( { b }_{ k } \right)}{ \partial { b }_{ k } } =g^{ \prime }\left( { b }_{ k } \right) \qquad (9)\]

式(3)より

\[\frac { \partial { b }_{ k } }{ \partial { w }_{ kj } } =\frac { \partial \sum _{ k=1 }^{n}{{w}_{ kj}{ z}_{j}}}{ \partial { w }_{ kj }}={z}_{j}\qquad (10)\]

よって、式(8)、(9)、(10)を用いることで、荷重結合の更新量は次式で表されます。

\[\begin{eqnarray*}\Delta {w}_{kj}&=&-\eta\left({y}_{k}-{T}_{k}\right)g^{\prime}\left({b}_{k}\right)z_j\qquad(11)\\ \\&=&-\eta{\delta}_{k}z_j\qquad(12)\end{eqnarray*}\]

ここで、\(\delta_k = (y_k-T_k)g'(b_k)\)と置き換えています。

以上のように、結合荷重の更新量は式(12)で表されるので、p回学習した結合荷重を\(w_{kj}^p\)で表すと

\[{ w }_{ kj }^{ p+1 }={ w }_{ kj }^{ p }+\Delta { w }_{ kj}\qquad (13)\]

となります。出力\(y_k\)が教師データ\(T_k\)に近づくと、式(11)の荷重結合の更新量も小さくなり、収束に向かうことが分かります。

次に、隠れ層と入力層の間の荷重結合の微小更新量\(\Delta w_{ji}\)を式(6)と同様に設定します。

\[\Delta { w }_{ ji }=-\eta \frac {\partial E}{ \partial { w }_{ ji }}\qquad (14)\]

隠れ層からの出力\(z_j\)は出力層の全てのユニットに広がって連結された後に、誤差Eに影響するために、連鎖則(Chain Rule)では、連結されている全てのユニットを考慮して、式(14)は次式のように展開します。

\[\begin{eqnarray*}\Delta { w }_{ ji }&=&-\eta \left\{ \sum _{ k=1 }^{ n }{ \frac { \partial E }{ \partial { z }_{ j } }}\right\} \frac { \partial { z }_{ j } }{ \partial { a }_{ j } } \frac { \partial { a }_{ j } }{ \partial { w }_{ ji } }\qquad (15)\\ \\&=&-\eta \left\{ \sum _{ k=1 }^{ n }{ \frac { \partial E }{ \partial { y }_{ j }}\frac { \partial { y }_{ j } }{ \partial { b }_{ j } } \frac { \partial { b }_{ j }}{ \partial { z }_{ j } }}\right\} \frac { \partial { z }_{ j } }{ \partial { a }_{ j } } \frac { \partial { a }_{ j } }{ \partial { w }_{ ji } } \qquad (16)\end{eqnarray*}\]

式(16)の各項を見ていきます。

式(8)より、\(\partial E/\partial y_k\)が、式(9)より、\(\partial y_k/\partial b_k\)が得られ、また

\[\frac { \partial { b }_{ k } }{ \partial { z }_{ j }} =\frac { \partial \sum _{ k=1 }^{ n }{{w}_{ kj }{z}_{k}}}{ \partial {z}_{j}}={w}_{ kj }\qquad (17)\]

となる。式(2)より

\[\frac { \partial { z }_{ j } }{ \partial { a }_{ j } } =\frac { \partial f\left( { a }_{ j } \right)}{ \partial { a }_{ j } } =f^{ \prime }\left( { a }_{ j } \right)\qquad (18)\]

となり、式(16)の最後の項は

\[\frac { \partial { a }_{ j } }{ \partial { w }_{ ji } } =\frac { \partial \sum _{ i=1 }^{ l }{ { w }_{ ji }{ x }_{ i } }}{ \partial { w }_{ ji } } ={ x }_{ i }\qquad (19)\]

となる。よって

\[\Delta { w }_{ ji }=-\eta \left\{ \sum _{ k=1 }^{ n }{ \left( { y }_{ k }-{ T }_{ k } \right) g^{\prime}\left( { b }_{ k } \right) { w }_{ kj } } \right\} f^{ \prime }\left( { z }_{ j } \right) { x }_{ i }\qquad (20)\\ =-\eta \left\{ \sum _{ k=1 }^{ n }{ { w }_{ kj }{ \delta}_{k}}\right\} f^{\prime}\left( { z }_{ j } \right) { x }_{ i }\qquad (21)\]

\[ =-\eta { \delta}_{j}{ x }_{ i }\qquad (22)\]

のように荷重結合の更新量が得られました。ただし、ここでは次式を利用しています。

\[{ \delta }_{ j }=f^{ \prime }\left( { z }_{ j } \right) \sum _{ k=1 }^{ n }{ { w }_{ kj }{ \delta}_{ k } } \qquad (23)\]

従って、式(13)と同様に、p回の更新によって、入力層と隠れ層の間の荷重結合\(w_{ji}^p\)は、次式のように表されます。

\[{ w }_{ ji }^{ p+1 }={ w }_{ ji }^{ p }+\Delta { w }_{ ji }\qquad (24)\]

式(13)と合わせると、全ての結合荷重が算出できました。これがニューラルネットワークの誤差逆伝播で行うパラメータ更新の内容です。

多くのデータを用いて学習させ、結合荷重を収束させて、決定することが出来たならば、それを用いてニューラルネットワークの式(1)~(4)を構築します。そして、新たな入力データに対してフィードフォワードの計算することで、簡単に出力を得ることができます。その出力は、新たな入力データを過去データに基づいて判断した答えというになります。

ただ、学習用のデータセットに対しては式(5)の誤差Eが局所的極小点(Local Minimum)に落ち込み比較的小さい値を示すものの、その後の新規データに対してはEの値が大きく、結果がよくないことがしばしば起こります。これを過学習(overfitting)と言います。この過学習を防ぐための工夫について、次回お話します。
---------------------------
<お勧め書籍>
機械学習について丁寧に書かれた良書です。本格的に勉強したい人には必携のお勧め本です。

======== 非線形活性化関数 ========

シグモイド関数

\[h\left( x \right) =\frac { 1 }{ 1+exp\left( -x \right)}\qquad (a1)\]

\[\frac { \partial h\left( x \right)}{ \partial x } =h\left( x \right) \left( 1-h\left( x \right) \right) \qquad (a2)\]

ハイパボリックタンジェント関数

\[h\left( { x } \right) =tanh\left( x \right)=\frac { exp\left( x \right) -exp\left( -x \right)}{ exp\left( x \right) +exp\left( -x \right)}\qquad (a3)\]

\[\frac { \partial h\left( x \right)}{ \partial x } =1-h\left( x \right) \cdot h\left( x \right)\qquad (a4)\]

Softmax関数

\[h\left( { x } \right) =\frac { exp\left( { x }_{ i } \right)}{ \sum _{ j=1 }^{ n }{ exp\left( { x }_{ j } \right)}}\qquad (a5)\]

\[\frac { \partial h\left( { { x }_{ i } } \right)}{ \partial { x }_{ i } } =h\left( { x }_{ i } \right) \qquad (a6)\]

Softmax関数はその層にある全ユニットの出力値の合計を分母とし、注目ユニットの出力を分子に持っています。これは全てのユニットの出力合計を1に規格化するためであり、出力を確率に変換する際などに利用されます。

ニューラルネットワークの基本 ~フィードフォワードネットワーク~

人工知能の代表的な技術の一つに人工ニューラルネットワーク(Artificial Neural Network)があります。

人工ニューラルネットワークは、脳の神経細胞ニューロンの構造を真似て作成したもので、複数のニューロンが存在する層を積層し、異なる層のニューロンを接続して信号を伝達します。

今、\(p\)番目の層(\(p\)層とする)の\(j\)番目のユニット(ニューロン)について考えます。\(p-1\)層の\(i\)番目のユニットの出力を\(x_i\)とすると、これに重みパラメータ\(w_{ji}^{(p)}\)を乗じた項の線形和\(a_j\)が\(p\)層の\(j\)番目のユニットへの入力となります。

\[a_j= \sum_{i=0}^{m} w_{ji}^{(p)}x_i \qquad (1)\]

ここで、\(w_{ji}^{(p)}\)は\(p-1\)層の\(i\)番目のユニットから\(p\)層の\(j\)番目のユニットへの重みパラメータ\(w\)を表しており、\(a_j\)は活性と呼ばれます。

そして、\(p\)層、\(j\)番目のユニットへの入力\(a_j\)は、微分可能な非線形活性化関数\(h()\)により出力\(z_j\)に変換されます。

\[z_j=h(a_j) \qquad (2)\]

ここでは\(i=0\)の時、\(x_0=1\)として、入力信号の影響を受けない項\(w_{j0}^{(p)}\)としています。これをバイアスパラメータと呼びます。

図1 ニューラルネットワークの構成図

重みパラメータとバイアスパラメータを区別し、式(1)、(2)をまとめて書くと、

\[z_j=h( \sum_{i=1}^{m} w_{ji}^{(p)}x_i +w_{j0}^{(p)}) \qquad (3)\]

となり、\(p\)層の\(j\)番目のユニットへの入力\(x_i\)と出力\(z_j\)が表されます。

図1では、\(p-1\)層の全てのユニットから\(p\)層の\(j\)番目のユニットへの接続線しか表示されていないのですが、\(p-1\)層の全てのユニットは\(p\)層の全てのユニットに接続されています。

そして、重みパラメータとバイアスパラメータの値、および非線形活性化関数により、入力を所望の出力に変換させることを狙いとしています。

非線形活性化関数\(h()\)には、ロジステックシグモイド関数やtanh関数などのシグモイド関数が利用されます。

ロジステックシグモイド関数 \(\sigma\left(\right)\)

\[\sigma \left( a_j \right) =\frac { 1 }{ 1+exp\left({ -a_j }\right) } \qquad (4)\]

ハイパーボリックタンジェント関数 \(tanh\left(\right)\)

\[tanh \left( a_j \right) =\frac { exp\left({ a_j }\right)-exp\left({ -a_j }\right) }{ exp\left({ a_j }\right)+exp\left({ -a_j }\right) } \qquad (5)\]

式(3)の出力\(z_j\)は次の層への入力信号となり、順次これが繰り返され、最終的な出力が得られます。

分かり易い例として、図1のような、\(p-1\)層が入力層で、\(p\)層が隠れ層、\(p+1\)層が出力層となる3層構造を考えてみましょう。

これを用いて、例えば、30画素×30画素の白黒画像の数字0~9を認識させる場合であれば、入力層のユニット数を900個とし、ここに900画素の輝度値を入力します。つまり、輝度値が図1の\(x_i\)となります。ただし、輝度値\(x_i\)は0~1の間に収まるように規格化するのが一般的です。そして、式(3)を用いて隠れ層の出力\(z_j\)を計算します。この出力が3番目の出力層への入力信号となります。

隠れ層のユニット数は自由に設定することができます。言い換えると、性能が良くなるユニット数を実験から見出さねばなりません。

出力層のユニット数は10個とし、数字の0~9に対応させます。そして、例えば、数字の2の画像(900画素の輝度値)を入力したら、その正解出力は、出力層の2番目のユニットが1となり、その他は0となります。数字の5であれば、正解出力は出力層の5番目のユニットが1となり、その他は0となります。このような正解出力が出るように重みパラメータとバイアスパラメータを決定します。正解出力から逆方向に遡ってパラメータを決める過程をバックプロパゲーションと呼びます。また、0~9までの数字画像を次々と入力し、正解出力を与えて、その計算過程にあるパラメータを決めるプロセスは、まるで機械が学習をしているようなので、機械学習と呼ばれます。

次回は、バックプロパゲーションによりパラメータを算出する方法を解説します。

---------------------------
<お勧め書籍>
機械学習について丁寧に書かれた良書です。本格的に勉強したい人には必携のお勧め本です。

人工知能は技術屋なら誰でも使えるようになる

人工知能と聞くと、技術屋であっても「自分には関係ない世界の話だ」とか、「理論が難しくて理解できない」、などと反応されるかもしれません。

しかし、人工知能は決して難しい技術ではありません。

基本的な数学が分かる人であれば、少し努力すれば、誰でも人工知能技術を理解し、利用できるようになります。また、技術屋であれば、自分でコーディングして、これを作ることも決して無理なことではありません。

基本的なことをしっかり把握すれば、後は慣れることで、深く理解することができます。

人工知能という技術は、人間のような問題処理能力を持つコンピュータソフトのことであり、最近、急速に進化してきました。

例えば、画像認識の分野では、ここ数年で飛躍的に性能を上げてきており、手書き文字が何であるかを認識したり、写真に写っている多数の対象物が何であるかをそれぞれ識別するまでになってきました。

また、音声認識などでも、とても高い認識率を出しており、その利用価値はますます高まっています。

人工知能の代表的な技術は、人工ニューラルネットワーク(神経回路網)です。

人間の脳の構造を真似てプログラミングされた計算手法ですが、人間の脳を真似た所が非常に重要で、その構造ゆえに、人間の脳のように、多種多様な問題に対応することができるのです。

これまでのプログラミングでは、多くの場合、適用先は限定的でした。しかし、ニューラルネットワークは幅広い問題に適用できるのです。

皆さんもご自分の問題の解決に、是非とも人口知能を利用してみてください。うまくいけば、人工知能の有能性に驚かれることでしょう。

コンピューターによる画像認識を今の仕事の改善に利用できないか、とか、大量の過去データを元にして、今後の傾向の予想したい、とか、あるいは今起きている事象から次に起こりうる事象を予想できるか、など、様々な問題の解決に利用できます。

是非とも、人工知能技術を使って、ものごとを論理的に捉え、有利に進展させることを考えられるとよいのではないかと思います。

このサイトでは人口知能の利用方法についてお伝えし、皆様がこの技術を使えるようになれるようにサポートします。

ただし、人工知能を用いれば何でも解決できる、というモノではないことは、理解しておく必要があります。まだまだ発展途上の技術です。